MODELING THE ACTIVE ZONE OF A WATER-MODERATED
REACTOR WITH A VARIABLE NUMBER
OF BOILING CHANNELS
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A scheme is proposed for the modeling of the dynamics of the active zone, with specified
distributions for the heat~carrier flow rate and for the energy release, and the procedure
involves the use of nonidentical boiling channels with quick-response fuel elements. As
the initial condition, we use the possibility — demonstrated in this article — of a rigorous
description (with a single channel) of a group of channels that are variously heated, but
with a volume energy release similar for each.

The channels of an operating reactor exhibit various thermophysical conditions. They differ in terms
of the magnitude of energy release, and the flow rate and heating of the heat carrier. Even in the case of
ideal flow rate (identical heating in all channels), the channels exhibit diverse thermal inertia and react
differently to perturbations in inlet enthalpy, power, etec.

If the heat carrier is boiling in some of the channels, its average density in such channels will differ
substantially from those in which it is not boiling, and consequently these channels make different contribu-
tions both to the reactivity and to the change in the heat-carrier volume of contour I.

The active-zone model developed to investigate nonsteady regimes must ensure the required accuracy
in the description of the changes in a number of averaged heat-carrier characteristics (averaged over a
channel or a group of channels) (for example, the average-volume density and the inlet enthalpy of the heat
carrier, averaged over the cross section), as well as in the description of certain local characteristics
(for example, the maximum variations in temperature or heat content at the channel outlet).

The capacity of a digital computer is inadequate to model each channel of an active zone in the study
of nonsteady regimes for reactor operation, and a group of channels linked by some common indicator must
thus be replaced by a single equivalent channel,

The resulting difficulties are associated with the need for a sufficiently precise description, simul~
taneously, of the average heat-release rate (qu/Gj = const) and inertia (L/Voj # const).

We will demonstrate that on the basis of the familiar nonsteady distribution of enthalpy in a channel
with the smallest static flow rate we can determine the precise distribution of enthalpy in another channel
of the reactor, with the same volume release, but with a greater static flow rate for the heat carrier.

This enables us to average the channel parameters on the basis of only a single indicator, adhering
strictly to the nonequivalence of the channels with respect to some other indicator. Obtaining the enthalpy
distribution in the channel which is not modeled directly on the basis of the enthalpy distribution in a channel
with another flow rate does not require the solution of differential equations,

The equations of continuity and heat balance for the j-th channel with a constant cross section and a
heat flow constant over the length have the form
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in the assumption that the thermal inertia of the fuel element is small. Completing (1) with the equation of
state
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we derive a system of equations with 3 unknowns Yj x, 1), Gj (%, t), and ij (x, t). The quantities Gjin {t),
ijp(t), and qj {t) are specified equations of time.

Let us examine (1) for i <i'.

We assume qj(t) = qojn(t), where qyj is the static heat flow in the j-th channel; Gj %, t) = Vi(x, t)Sj'yj
= Vojg(’c)Si'yj, where Voj is the velocity of the heat carrier in the j-th channel.

From (1) we obtain
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Let us examine a group of k channels with similar volume heat-release rates qjo/sj =q, =1, 2,
., k.

Equation (3) is then rewritten in the form
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We will treat x as a function of time, satisfying (5):
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If (4) describes the time variation of enthalpy at each point of the j-th channel, the equation derived
from (4) and (5) will evidently describe the time variation in enthalpy at a point moving along the channel
at a speed commensurate with the velocity of the single-phase elements of the heat carrier in the channel.

Substituting (5) into (4) and solving the resulting equation, we find
t
() =2 j n (0 dt + i (o). (6)
Y
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Let t; be the instant at which the particle enters the channel. Then ij (ty) = ijp, while (6) determines
the enthalpy of the particles — which enter the channel with an enthalpy i;, at the instant t; — at any instant
of time.

We note that (6) can be treated not only as the relationship for the determination of the enthalpies of
the particles entering the channels simultaneously but also as the equation for the relative moments t;; of
which an equal enthalpy will be attained: ij (ty5) = ispu It is evident that t;j is independent of the channel
number. ’

From (5) we determine the coordinates corresponding to the particles entering the channels simul-
taneously and exhibiting identical enthalpies at a given constant of time in various channels:

ty
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where t; may be arbitrary.

It follows from (7) that we have the relationship
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Thus, having solved (4) for one j and having determined the enthalpy distribution over the length of
the j-th channel at any instant of time, we know the enthalpy distribution in any channel of the group being
examined. Indeed, the particles entering the channels simultaneously reach equal enthalpies, and this also
simultaneously, but they cover paths in this case that are different, and these can be found from (8), without
solution of additional differential equations. :

We can demonstrate that an analogous conclusion can be drawn with regard to the two-phase segment.

Let us examine system (9):
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where V]- x=0,t)= V(,jg t) and q; ) = qojn(t); v and i are related by
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from which, eliminating ¢, we obtain
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We will subtract i from i* so that we satisfy [(y")~! - (y') )i, /r, where ip=1i-i*.
This gives us ,
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It is not difficult to see that replacement of the variables does not alter the form of the first equation

in (9) when we consider the continuity equation. Indeed, the equation
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reduces to the equation
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and (10) therefore assumes {1] the form
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Since we have chosen channels with identical volume energy-release rate for the group, we have
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and the solution of (11) is found in the form

V(s 1) = 8n.(0) [¢ — hes (0] +V; [feg @) 1] = 6.0 [x— hes (] + Vos () (12)
With consideration of (12) the continuity equation is written in the form
Wi+ von 0+ T (Vo () + 500 [¥ — hes (0]} =0 13)
As in the previous case, we will assume that x is a function of time, determined by the equation
B~ Vi) -+ 010 [0 — hes 0] (14)

Moreover, we assume ‘I’j ) = ln(yj )/ v".
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Equation (13) then reduces to
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whence
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As was demonstrated above, the particles entering the channel simultaneously reach equal enthalpies
at the same instant of time. Consequently, if tij denotes the instant at which the saturation enthalpy is at-
tained in the j-th channel, we have tij =t,when j=1, 2, ..., kand
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Since dx/dt — determined from (14) — denotes the velocity of the heat carrier in the evaporation zone,
we see from (16) that equal values of ¥ (and consequently, equal values of density and enthalpy) for parti-
cles entering the channels simultaneously, on motion through the evaporation zone, will also be attained
simultaneously (although they will cover different paths in this case).

It remains to determine the relationship between the coordinates of the particles in the evaporation
zone, these particles having entered the various channels simultaneously, and exhibiting equal enthalpies
at a given instant of time.

Considering that hej/hey = Vyj/Vyy, inthe light of (8), let us transform (14) as follows:
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It is obvious that (17), solved for X; (t)/VOj, is identical for all the channels of the group and exhibits
the same initial conditions:

=0  x(t=0)
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Thus, at the one- and two-phase segments the coordinates of the particles entering the various chan-
nels simultaneously and exhibiting equal enthalpy (density) are associated by means of the relationship
X0 _ %0
Voj Voy

Proceeding from the above, we can propose the following scheme for the modeling of the active zone:

1) all channels of the active zone are divided into several groups, with each group containing the chan-
nels with identical volume energy-release rates that are not dependent on the flow rate (the magnitude of
heating);

2) from each group we select the channel with the smallest static flow rate, and for each we use a
digital computer to solve the equations of continuity and heat balance;

3} from the derived enthalpy distributions over channel length for each instant of time we determine
all required characteristics of any channel in the group under consideration, without direct modeling;

4) we calculate the characteristics at the outlet from the active zone by simple averaging of the appro-
priate parameters at the outlet from the channels, for a given instant of time.

NOTATION
Land S are, respectively, the channel length and cross section;
V, G, v, and i are, respectively, the velocity, the flow rate, the density, and the enthalpy of the heat

carrier;
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q is the heat flow per unit channel length;

X is the coordinate along the channel;

t is the time;

vy'and y"  are the densities of the water and of the vapor at the saturation line;
i is the saturation enthalpy;

T is the specific heat of vapor formation;

% is the volume vapor content;

hg is the length of the economizer zone.

Subscripts

0 pertains to the initial state;

in denotes the inlet to the channel;

out denotes the outlet from the channel;
j is the channel number;

n is a new variable;

sp is a specified quantity.
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